
Malware Reverse Engineering Report Practical 3

By: Gary Jones

Jonegn1@ufl.edu

CAP4136 Practical 3: Reverse Malware Engineering

mailto:Jonegn1@ufl.edu

Executive summary

Project overview

The goal of Practical 3 is to dissect the functionality of sample3.dll using static and dynamic

analysis.

Summary of findings

Sample3.dll has proven to be a challenging piece of malware to analyze. It is packed and it uses

anti-debugging techniques. This malware challenges the user at every turn. Through the use of

various tools it was found that this malware bares hallmarks of the EnigmaProtector and

Armadilo Packer. In addition the family of malware it is most closely related to is Emotet which

means that it focuses on downloading other malware from the internet and discovering other

systems on a users network. This malware was also found to target the WPAD registry. This

means that it could be extracting passwords and might be compromising the system for a man in

the middle attack. Adding on to this the malware was also found to contain strings that point to

hooking so this is a possible operation performed by the program.

Technical report

Findings: Static Analysis

1. Identify the apparent compilation date of the program.

The compilation date of sample3.dll is 04MAR2022. This is in the past however it is incredibly recent

and could be a suspicious indicator for malfeasance.

Figure 1: Compilation Date of Sample3.dll

2. Identify any suspicious properties of the program’s Imports.

Sample3.dll has a significant amount of imports with a number of 534. Within this number there are 61

blacklisted and 2 imports without a listed group. There are 15 groups that the blacklisted functions fall

within and two names that do not have a group attributed to them. These groups are as follows:

• Windowing

• System-information

• Storage

• Shell

• Resource

• Registry

• Memory

• Keyboard-and-mouse

• Hooking

• File

• Execution

• Exception-handling

• Dynamic-library

• Data-exchange

• Console

The most suspicious among these groups are as follows: keyboard-and-mouse, hooking, data-exchange,

and registry.

The imports associated with keyboard-and-mouse: GetKeyNameTextA, MapVirtualKeyA, and

GetKeyState

The imports associated with Hooking: CallNextHookEx, UnhookWindowsHookEx,

SetWindowsHookExA

The imports associated with Data-exchange: GetAtomNameA, GlobalGetAtomNameA,

GlobalFindAtomA, GlobalAddAtomA, GlobalDeleteAtom, RegisterClipboardFormatA, OleSetClipboard,

OleFlushClipboard

The imports associated with Registry: RegCreateKeyA, RegDeleteValueA, RegSetValueExA,

RegSetValueA, RegEnumKeyA, RegDeleteKeyA, 163 (RegisterTypeLib)

The two imports not associated with any group but are still blacklisted are DuplicateHandle and

SystemParametersInfoA

Figure 2: Sample3.dll Imported Libraries Part 1

Figure 3: Sample3.dll Imported Libraries Part 2

3. Identify any suspicious or relevant strings (IP addresses, urls, process names, file names,

etc.).

After looking at the strings I was not able to identify any IP addresses or URL names. However, there are

6294 strings with 73 blacklisted strings. An interesting observation is that a number of the blacklisted

strings are also found in the import section and are like for like with the reported groups: keyboard-and-

mouse, hooking, registry, and data-exchange.

With that said, other suspicious strings include activities with files such as MoveFile, DeleteFile,

LockFile, UnlockFile, SetFileAttributes, PathRemoveFileSpec and more.

Figure 4: Blacklisted strings part 1

Figure 5: Blacklisted strings part 2

Figure 6:Blacklisted strings part 3

After the initial look at the program with pestudio the static analysis was extended to include Virus Total

and Intezer Analyze. From these tools several other strings were identified to be indicative of malware.

These strings include the following:

• 7 7$707@7L7\7h7x7 - associated with Generic Malware

• 4W5]5s5~5 – associated with poison Malware

• >5>E>X>p> - associated with RedLeaves Malware

• SVWjkXjef – associated with Turla Malware

• Y;D$8t – associated with Emotet Malware

• 1 272E2N2 – associated with RootKit, RatankbaPOS Malware

• GBBFRF – associated with Emotet Malware

Figure 7: String Association with Malware

In addition to the malware family identifiers, Intezer Analyze also identified strings associated with

different packers which include the following:

• 6:6>6B6F6J6N6R6V6Z6^6b6f6j6n6r6v6z6~6 – associated with EnigmaProtector Packer

• :6;<;L; - associated with Armadilo Packer

Figure 8: String Association with Packers

4. If you find anti-disassembly techniques, report them.

Through analysis with the debugger on the Windows 7 virtual machine anti-debugging properties were

identified. As shown in Figure 9 we can see eax+2. This line is identifying whether or not debugger is

being used. When this results in 1 it indicates that a debugger has been detected. For further verification

we can also see the anti-debugging property in Ghidra as shown in FUN_10047030 (Figure 10).

Figure 9: Anti-debugging property x32dbg

Figure 10: Ghidra anti-debugging

5. Describe the obfuscation methods you find. You will surely be impacted by them, but

identifying any interesting patterns might be helpful in developing a tool to combat them.

With the use of JOESandbox Cloud the analysis of malware was analyzed and from the results some

suspicious functions were identified that were identified as being related to encryption. Looking into it we

find a high degree of relation to FUN_10001985 (see Figures 11 through 13) and FUN_10005367 (see

Figures 14 through 16) with the latter function calling the former function numerous times – in a very

suspicious manner that indicates that encryption is likely occurring.

Figure 11: FUN_0001985 Part 1

Figure 12: FUN_0001985 Part 2

Figure 13: FUN_0001985 Part 3

Figure 14: FUN_10005367 Part 1

Figure 15: FUN_10005367 Part 2

Findings: Dynamic Analysis

Figure 16: FUN_10005367 Part 3

1. Interesting behaviors that occur after the malware has executed.

The most notable behavior exhibited by the malware is its interaction with WPAD. From experience with

penetration testing the modification of this software can be used to further compromise a system by

stealing listed passwords and setting the environment for a man in the middle attack. However, no other

notable behaviors were observed and there were no persistence mechanisms identified.

2. Identify whether or not there is any networking behavior exhibited by the program and, if so,

record it.

By utilizing fakedns the network activity being utilized by the sample3.dll was analyzed. From this

activity the following network activity was identified:

• dns.msftncsi.com

• fs.microsoft.com

• 255.245.168.192.in-addr.arpa

• 133.245.168.192.in-addr.arpa

• 104.195.71.45.in-addr.arpa

• 167.106.37.54.in-addr.arpa

• 2.0.0.0.1.0.2.0.f.f.ip6.arpa

• 138.130.168.185.in-addr.arpa

• 177.244.44.37.in-addr.arpa

• 78.25.184.185.in-addr.arpa

• 15.168.148.185.in-addr.arpa

• 135.192.199.128.in-addr.arpa

• 141.209.59.37.in-addr.arpa

• 169.204.41.103.in-addr.arpa

• 120.58.42.103.in-addr.arpa

• 220.168.148.185.in-addr.arpa

As shown in Figures 17 and 18 there are more addresses attempting contact.

Figure 17: Network Activity Part 1

Figure 18: Network Activity Part 2

3. Identify any registry keys created/modified by the malware.

In order to identify any registry keys being created or modified procmon was used. After initiating the

program and letting it run the file was saved and analyzed. By filtering for the Process Name:

regsvr32.exe and the Operation: RegCreateKey I was able to identify the created keys of sample3.dll as

shown in Figure 19. I did not notice the modification of any registry keys. From Figure 19 we can see

extensive work being performed on WPAD, connections with the internet, and Tcpip parameters. The

interaction with WPAD is especially concerning as it can be exploited to glisten passwords and perform a

man in the middle attack.

Figure 19: Created Registry Keys

4. Identify any files created/modified by the malware.

In order to identify the files created and modified procmon was used. As seen below in Figure 20 a

significant amount of modifications was made in association with WPAD which as described earlier is a

concerning indicator for the system being compromised.

Figure 20: Modified Files

5. Identify any processes started by the malware.

By utilizing process explorer we can observe that there were no processes started by the sample3.dll file

when run.

Figure 21: process explorer

6. Identify any persistence mechanisms employed by the malware.

After analyzing sample3.dll there was no persistence mechanisms observed with exception of the mutants

stored in the Windows and System32 folders.

7. Describe what you did to overcome the obfuscation methods the program uses.

Directly overcoming the obfuscation methods issued by this malware was beyond my ability. To help

alleviate overcome this obstacle and still analyze the malware virus total, JOESandbox Cloud, and Intezer

Analyze were leveraged to help guide the direction taken. From there I used the tools available to the best

of my ability to confirm sections of compromise.

Indicators of Compromise
There are several indicators of compromise for this malware sample including the obfuscation methods as

well as anti-debugging techniques deployed. In addition there is observable interactions with WPAD,

however; even more blatant is that several minutes after activation there is a significant uptick in network

activity. These behaviors are the observed indicators of compromised of this malware.

To identify this malware a yara rule was created and tested for correct use. See below for the established

rule:

rule creds_ru

{

meta:

strings:

description = “simple YARA rule”

$a = “Y;D$8t”

$b = “GBBFRF”

condition:

($a and $b)

}

